德克萨斯理工大学徐长学等 | 关于3D生物打印中细胞沉降问题的观点
内容简介
本观点论文聚焦3D生物打印中的细胞沉降问题炒币。3D生物打印通过对于生物墨水的逐层精确定位来制造3D人造组织/器官。尽管近些年3D生物打印已经被越来越多地用于组织工程和再生医学,3D生物打印仍然面临许多挑战,例如打印过程中的细胞沉降问题。生物墨水,作为3D生物打印中的重要元素,通常由生物材料和活性细胞组成。当细胞所受到的重力大于细胞所受到的浮力时,细胞将在重力的驱使下沉降并堆积在生物墨水容器的底部,这将会加剧细胞的凝聚并影响打印精度和可靠性。本文总结了前人提出的细胞沉降的问题,讨论了细胞沉降的机理,表征了细胞沉降的行为,并总结了潜在的有效缓解细胞沉降的方法。
文章导读
图1 细胞沉降以及细胞凝聚对于喷墨式3D生物打印性能的影响
图2 细胞沉降的表征
展开全文
图3 几种典型的缓解细胞沉降的方法
参考文献
上下滑动以阅览
1. Derakhshanfar S, Mbeleck R, Xu K et al (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3:144–156.
7. Nakamura M, Kobayashi A, Takagi F et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666.
9. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14:41–48.
11. Mandrycky C, Wang Z, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434.
16. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773.
17. Gungor-Ozkerim PS, Inci I, Zhang YS et al (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946.
18. Boularaoui S, Al Hussein G, Khan KA et al (2020) An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting 20:e00093.
21. De Melo BA, Jodat YA, Cruz EM et al (2020) Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 117:60–76.
22. Lee A, Hudson A, Shiwarski D et al (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482–487.
23. Xin S, Chimene D, Garza JE et al (2019) Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater Sci 7:1179–1187.
24. Yin J, Yan M, Wang Y et al (2018) 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interf 10:6849–6857.
26. Gaebel R, Ma N, Liu J et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230.
27. Zhang YS, Arneri A, Bersini S et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59.
28. Abbadessa A, Mouser VH, Blokzijl MM et al (2016) A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromol 17:2137–2147.
30. Mirdamadi E, Tashman JW, Shiwarski DJ et al (2020) Fresh 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng 6:6453–6459.
31. Xu H, Casillas J, Krishnamoorthy S et al (2020) Effect of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater 15:055021.
34. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Bio 7:211–224.
35. Liu F, Liu C, Chen Q, et al (2018) Progress in organ 3D bioprinting. Int J Bioprint 4:128.
38. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203.
40. N’dri N, Shyy W, Tran-Son-Tay R, (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85:2273–2286.
41. Dembo M, Torney D, Saxman K, et al (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc Royal Soc B P Roy Soc B Biol Sci 234:55–83.
42. Kim S, Popel AS, Intaglietta M et al (2005) Aggregate formation of erythrocytes in postcapillary venules. Am J Physiol Heart Circ 288:H584–H590.
43. Goodhead LK, MacMillan FM (2017) Measuring osmosis and hemolysis of red blood cells. Adv Physiol Educ 41:298–305.
44. Kimizuka H, Koketsu K (1964) Ion transport through cell membrane. J Theor Biol 6:290–305.
45. Vujovic P, Chirillo M, Silverthorn DU (2018) Learning (by) osmosis: an approach to teaching osmolarity and tonicity. Adv Physiol Edu 42:626–635.
46. Baldwin WW, Sheu M, Bankston P et al (1988) Changes in buoyant density and cell size of Escherichia coli in response to osmotic shocks. J Bacteriol 170:452–455.
47. Strange K (2004) Cellular volume homeostasis Adv Physiol Edu 28:155–159.
49. Chahal D, Ahmadi A, Cheung KC (2012) Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions. Biotechnol Bioeng 109:2932–2940.
52. Chen F, Lin L, Zhang J et al (2016) Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal Chem 88:4354–4360.
54. Na K, Shin S, Lee H et al (2018) Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J Ind Eng Chem 61:340–347.
55. Lindsay CD, Roth JG, LeSavage BL et al (2019) Bioprinting of stem cell expansion lattices. Acta Biomater 95:225–235.
57. Bryan AK, Hecht VC, ShenW, et al (2014) Measuring single cell mass, volume, and density with dual suspended microchannel resonators. Lab Chip 14:569–576.
60. Arocena M, Zhao M, Collinson JM et al (2010) A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res 88:3267–3274.
关于本刊
Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文季刊,主编杨华勇院士、崔占峰院士,2018年新创,目前已被SCI-E等检索,最新影响因子为5.887炒币。
初审迅速:初审快速退稿,不影响作者投其它期刊炒币。
审稿速度快:过去两年平均录用时间约40天;平均退稿时间约10天炒币。文章录用后及时在线SpringerLink。一般两周左右即被SCI-E检索。
收稿方向:机械工程(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计等炒币。
文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)炒币。
期刊主页:
/ (国内可下载全文)
在线投稿地址:
入群交流
围绕BDM刊物的投稿方向炒币,本公众号建有“ 生物设计与制造”学术交流群,加小编微信号 icefires212入群交流,或扫以下二维码
相关文章

发表评论